最长上升子序列模型

题谱如上:
也是一些可以套模版来做的。
就是遍历前面已经扫描的点的状态,找出一个最大的,使用它来表示当前状态。
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 110;
int k;
int main()
{
scanf("%d", &k);
while (k--)
{
int n;
// 记录楼的高度
int h[N];
// 记录到第i栋楼的最大跳跃次数
int f[N];
// 记录最大值,切记要初始化(已老实)
int ans = 0;
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf(" %d", &h[i]);
// 正向遍历求最大值
for (int i = 1; i <= n; i++)
{
f[i] = 1;
for (int j = 1; j < i; j++)
{
if (h[i] < h[j])
{
f[i] = max(f[i], f[j] + 1);
}
}
ans = max(ans, f[i]);
}
// 反向遍历求最大值
for (int i = n; i >= 1; i--)
{
f[i] = 1;
for (int j = n; j > i; j--)
{
if (h[i] < h[j])
{
f[i] = max(f[i], f[j] + 1);
}
}
ans = max(ans, f[i]);
}
printf("%d\n", ans);
}
return 0;
}#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1010;
int n;
// 记录海拔
int h[N];
// f[i]表示上山上到第i个景点,爬的最多的山的数量
// b[i]表示下山从第i个景点,走过的最多的山的数量
int f[N], b[N];
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d", &h[i]);
for (int i = 1; i <= n; i++)
{
f[i] = 1;
for (int j = 1; j < i; j++)
{
if (h[i] > h[j])
f[i] = max(f[i], f[j] + 1);
}
}
for (int i = n; i >= 1; i--)
{
b[i] = 1;
for (int j = n; j > i; j--)
{
if (h[i] > h[j])
b[i] = max(b[i], b[j] + 1);
}
}
int ans = 0;
for (int i = 1; i <= n; i++)
ans = max(ans, f[i] + b[i] - 1);
printf("%d", ans);
return 0;
}#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1010;
// 其实就是最少的不爬的山的数量
int n;
// 记录海拔
int h[N];
// f[i]表示上山上到第i个景点,爬的最多的山的数量
// b[i]表示下山从第i个景点,走过的最多的山的数量
int f[N], b[N];
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf("%d", &h[i]);
for (int i = 1; i <= n; i++)
{
f[i] = 1;
for (int j = 1; j < i; j++)
{
if (h[i] > h[j])
f[i] = max(f[i], f[j] + 1);
}
}
for (int i = n; i >= 1; i--)
{
b[i] = 1;
for (int j = n; j > i; j--)
{
if (h[i] > h[j])
b[i] = max(b[i], b[j] + 1);
}
}
int ans = 0;
for (int i = 1; i <= n; i++)
ans = max(ans, f[i] + b[i] - 1);
printf("%d", n-ans);
return 0;
}#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 5010;
typedef pair<int,int> PII;
int n;
PII h[N];
int f[N];
int ans;
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
{
int x, y;
scanf(" %d %d", &x, &y);
h[i].first = x;
h[i].second = y;
}
sort(h+1,h+n+1);
for (int i = 1; i <= n; i++)
{
f[i] = 1;
for (int j = 1; j < i; j++)
if (h[i].second > h[j].second)
f[i] = max(f[i], f[j] + 1);
ans = max(ans, f[i]);
}
printf("%d", ans);
return 0;
}#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1010;
int n;
int h[N];
int f[N];
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf(" %d", &h[i]);
for (int i = 1; i <= n; i++)
{
for (int j = 1; j < i; j++)
{
if (h[i] > h[j])
f[i] = max(f[i], f[j]);
}
f[i] += h[i];
}
int ans = 0;
for (int i = 1; i <= n; i++)
ans = max(ans, f[i]);
printf("%d", ans);
return 0;
}#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 1010;
int w[N];
int g[N], f[N];
int n = 1;
int res = 0, cnt = 0;
int main()
{
while (cin >> w[n])
n++;
for (int i = 1; i < n; i++)
{
f[i] = 1;
for (int j = 1; j < i; j++)
if (w[j] >= w[i])
f[i] = max(f[i], f[j] + 1);
res = max(res, f[i]);
}
cout << res << endl;
for (int i = 1; i < n; i++)
{
int k = 0;
// 填入的同时保持其单调上升,因为后面填入的数一定比前面所有填入的数都大,才会再开一个
while (k < cnt && g[k] < w[i])
k++;
g[k] = w[i];
if (k >= cnt)
cnt++;
}
cout << cnt << endl;
return 0;
}#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 55;
int n;
int w[N];
int ans;
int up[N], down[N];
// x表示当前遍历到的导弹,uu表示上升序列数,dd表示下降序列数
void dfs(int x, int uu, int dd)
{
// 剪枝
if (uu + dd >= ans)
return;
// 搜完,并且答案比原先要小,更新答案
if (x == n + 1)
{
ans = uu + dd;
return;
}
// case1:将现在的导弹放到上升序列中
int k = 0;
while (k < uu && up[k] >= w[x])
k++;
int tmp = up[k];
up[k] = w[x];
if (k >= uu)
dfs(x + 1, uu + 1, dd);
else
dfs(x + 1, uu, dd);
up[k] = tmp; // 恢复现场
// case2:将现在的导弹放到下降序列中
k = 0;
while (k < dd && down[k] <= w[x])
k++;
tmp = down[k];
down[k] = w[x];
if (k >= dd)
dfs(x + 1, uu, dd + 1);
else
dfs(x + 1, uu, dd);
down[k] = tmp;
}
int main()
{
while (cin >> n, n)
{
for (int i = 1; i <= n; i++)
cin >> w[i];
ans = n;
dfs(1, 0, 0);
cout << ans << endl;
}
return 0;
}AcWing 272. 最长公共上升子序列
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 3010;
int n;
int a[N], b[N];
int f[N][N];
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf(" %d", &a[i]);
for (int i = 1; i <= n; i++)
scanf(" %d", &b[i]);
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
f[i][j] = f[i - 1][j];
if (a[i] == b[j])
{
f[i][j] = max(f[i][j], 1);
for (int k = 1; k < j; k++)
{
//求1~j-1的所有公共子序列的最长值 -> 在b[j]<a[i]的时候,维护这个最长值 -> 到b[j]=a[i]的时候,直接将这个最长值赋进去
if (b[k] < a[i])
f[i][j] = max(f[i][j], f[i][k] + 1);
}
}
}
}
int ans = 0;
for (int i = 1; i <= n; i++)
ans = max(ans, f[n][i]);
printf("%d", ans);
return 0;
}AcWing 272. 最长公共上升子序列(优化版)
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int N = 3010;
int n;
int a[N], b[N];
int f[N][N];
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
scanf(" %d", &a[i]);
for (int i = 1; i <= n; i++)
scanf(" %d", &b[i]);
for (int i = 1; i <= n; i++)
{
int maxn = 1;
for (int j = 1; j <= n; j++)
{
f[i][j] = f[i - 1][j];
// 求1~j-1的所有公共子序列的最长值 ->
// 在b[j]<a[i]的时候,维护这个最长值 ->
if (b[j] < a[i])
maxn = max(maxn, f[i][j] + 1);
// 到b[j]=a[i]的时候,直接将这个最长值赋进去
if (b[j] == a[i])
f[i][j] = max(f[i][j], maxn);
}
}
int ans = 0;
for (int i = 1; i <= n; i++)
ans = max(ans, f[n][i]);
printf("%d", ans);
return 0;
}
本文是原创文章,采用 CC BY-NC-ND 4.0 协议,完整转载请注明来自 梓dayo
评论
匿名评论
隐私政策
你无需删除空行,直接评论以获取最佳展示效果